

Meeting Sponsors

Open Mine Format

106th OGC Technical Committee, GeoScienceDWG session
Orléans, France
Andrew Scott
Global Mining Standards and Guidelines Group
22 March 2018

Exploration

Development

Production

Reclamation

Exploration

Development

Production

Reclamation

Exploration

Development

Production

Reclamation

"If you're importing a model from one software to another and not double-checking that the variables are imported correctly, you could totally screw up pit operations."

User Challenge: When Exports Don't Go As Intended

Destination System

the dewatering zone is

the slope angle is

5D

Source System

the dewatering zone is

5D

the slope angle is

45°

"We had a watering area flag. Because of [the] export, the import was screwed up ... So unless you were going through and double checking, and had the background to do that, could have been totally messed up."

User Experience: Exported Model Not Valid or Contains Errors

User Solution: Use Intermediary Software or Scripts

Shift the paradigm

Open Mining format: universal access to mining data

At a site like this...

...you may have:

Contact surface
Borehole assays
Block model
Access roads
Topography
Lidar survey
Ore body
Mining bench

...

Thinking at a lower level:

Object = Geometry + Data

Contact surface
Borehole assays
Block model
Access roads
Topography
Lidar survey
Ore body
Mining bench

PointSet LineSet Surface Volume Scalar Data Vector Data Date/Time Data Colors Images

OGC®

Thinking at a lower level:

Thinking at a lower level:

In the wild: Leapfrog and Deswik

This is now the state of OMF v1.0:

OMF:

Contact surface **POSSIBLE** Borehole assays **POSSIBLE** Block model **POSSIBLE** Access roads **POSSIBLE** Topography **POSSIBLE** Lidar survey **POSSIBLE** Ore body **POSSIBLE** Mining bench **POSSIBLE POSSIBLE**

OMF:

Surface + Data SUPPORTED LineSet + Data **SUPPORTED** Volume + Data **SUPPORTED** LineSet + Data SUPPORTED Surface + Data SUPPORTED Surface + Data SUPPORTED Surface + Data **SUPPORTED** Surface + Data **SUPPORTED SUPPORTED**

So where are things?

- We have focused on the foundation, not objects
- It demonstrates that a solution is possible and actually not that hard
- V1.0 is as much about changing mindsets as it is about a technical solution

What's next?

- 1. End users need to drive (e.g. \$\$, mandate to vendors, use-cases)
- 2. We need to explore development of V2.0 and/or adoption of other standards
- 3. We need to get permanent management of this solution (Technical, project management).

Questions

